1,468 research outputs found

    Dense packing crystal structures of physical tetrahedra

    Full text link
    We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well studied problems of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich optimal-packing behavior, compared to that of other continuous families of particles previously studied. We present four structures as candidates for the optimal packing at different values of the parameter, providing an atlas of crystal structures which might be observed in systems of nano-particles with tetrahedral symmetry

    An in vitro assessment using transverse microradiography of the effect on mineral loss of etching enamel for in situ studies.

    Get PDF
    OBJECTIVES: To test the hypothesis that etching enamel with 37% phosphoric acid for 30 s does not lead to detectable mineral loss when measured with transverse microradiography (TMR). DESIGN: An in vitro laboratory investigation. EXPERIMENTAL VARIABLE: Forty bovine incisors were used in the experiment. The crowns of the teeth were covered with acid resistant varnish except for a rectangular area on the labial surface approximately 10 x 12 mm. On the exposed labial surface of 20 teeth an enamel lesion similar to that used in the in situ caries model was induced. Twenty teeth were left without a lesion. The exposed area was divided into three areas of equal size. The control area (C) was covered with acid resistant varnish throughout the experiment. The first experimental area (E1) was etched with 37% phosphoric acid for 30 s and a simulated bracket was bonded to the surface with composite resin. The second experimental area (E2) was left exposed for the remainder of the experiment. The teeth were placed in a demineralizing solution for 24, 48, 72 or 96 h to replicate different cariogenic challenges. OUTCOME MEASURE: Mineral loss as measured with TMR. RESULTS: There were no significant differences in the mineral loss between etched (E1) and etched (C) areas of enamel. There were significant differences in mineral loss between E1 and E2 for the 48 h (p < 0.001) and 72 h (p = 0.001) exposures without a pre-formed enamel lesion. CONCLUSION: There is no detectable mineral loss with TMR when enamel has been etched for 37% phosphoric acid for 30 s. The use of in situ enamel specimens with acid etch retained simulated brackets to investigate demineralization during orthodontics will not significantly affect the outcome compared with unetched specimens

    Information mobility in complex networks

    Get PDF
    The concept of information mobility in complex networks is introduced on the basis of a stochastic process taking place in the network. The transition matrix for this process represents the probability that the information arising at a given node is transferred to a target one. We use the fractional powers of this transition matrix to investigate the stochastic process at fractional time intervals. The mobility coefficient is then introduced on the basis of the trace of these fractional powers of the stochastic matrix. The fractional time at which a network diffuses 50% of the information contained in its nodes (1/ k50 ) is also introduced. We then show that the scale-free random networks display better spread of information than the non scale-free ones. We study 38 real-world networks and analyze their performance in spreading information from their nodes. We find that some real-world networks perform even better than the scale-free networks with the same average degree and we point out some of the structural parameters that make this possible

    On the security of a new image encryption scheme based on chaotic map lattices

    Get PDF
    This paper reports a detailed cryptanalysis of a recently proposed encryption scheme based on the logistic map. Some problems are emphasized concerning the key space definition and the implementation of the cryptosystem using floating-point operations. It is also shown how it is possible to reduce considerably the key space through a ciphertext-only attack. Moreover, a timing attack allows the estimation of part of the key due to the existent relationship between this part of the key and the encryption/decryption time. As a result, the main features of the cryptosystem do not satisfy the demands of secure communications. Some hints are offered to improve the cryptosystem under study according to those requirements.Comment: 8 pages, 8 Figure

    Tetrisation of triangular meshes and its application in shape blending

    Full text link
    The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile technique for morphing, surface modelling, and mesh editing. We discuss an improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh in 3D space, we introduce a method to associate a tetrahedral structure, which encodes the geometry of the original mesh. 2. We use a Lie algebra based method to interpolate local transformation, which provides better handling of rotation with large angle. 3. We propose a new error function to compile local transformations into a global piecewise linear map, which is rotation invariant and easy to minimise. We implemented a shape blender based on our algorithm and its MIT licensed source code is available online

    On Adversarial Examples and Stealth Attacks in Artificial Intelligence Systems

    Full text link
    In this work we present a formal theoretical framework for assessing and analyzing two classes of malevolent action towards generic Artificial Intelligence (AI) systems. Our results apply to general multi-class classifiers that map from an input space into a decision space, including artificial neural networks used in deep learning applications. Two classes of attacks are considered. The first class involves adversarial examples and concerns the introduction of small perturbations of the input data that cause misclassification. The second class, introduced here for the first time and named stealth attacks, involves small perturbations to the AI system itself. Here the perturbed system produces whatever output is desired by the attacker on a specific small data set, perhaps even a single input, but performs as normal on a validation set (which is unknown to the attacker). We show that in both cases, i.e., in the case of an attack based on adversarial examples and in the case of a stealth attack, the dimensionality of the AI's decision-making space is a major contributor to the AI's susceptibility. For attacks based on adversarial examples, a second crucial parameter is the absence of local concentrations in the data probability distribution, a property known as Smeared Absolute Continuity. According to our findings, robustness to adversarial examples requires either (a) the data distributions in the AI's feature space to have concentrated probability density functions or (b) the dimensionality of the AI's decision variables to be sufficiently small. We also show how to construct stealth attacks on high-dimensional AI systems that are hard to spot unless the validation set is made exponentially large

    Algorithms and literate programs for weighted low-rank approximation with missing data

    No full text
    Linear models identification from data with missing values is posed as a weighted low-rank approximation problem with weights related to the missing values equal to zero. Alternating projections and variable projections methods for solving the resulting problem are outlined and implemented in a literate programming style, using Matlab/Octave's scripting language. The methods are evaluated on synthetic data and real data from the MovieLens data sets

    Shifting gender relations at Khok Phanom Di, Thailand: Isotopic evidence from the skeletons

    Get PDF
    The values for isotopes of strontium, carbon, and oxygen in human tooth enamel from the prehistoric site of Khok Phanom Di (ca. 2100–1500 BC) in Thailand shed light on human mobility and marital residence during a crucial period of subsistence change. Khok Phanom Di was a sedentary coastal community that apparently relied on hunting, gathering, and fishing in the midst of a transition to rice agriculture in the interior. The results of the isotope analyses indicate female immigration and then a marked shift to local strontium isotope signatures among females accompanied by a clear increase in the prestige of female burials. A possible explanation is a shift in the pattern of exogamy with a concomitant change in gender relations. Observation of a very similar transition at Ban Chiang, in northeastern Thailand, suggests the possibility of a regionwide social transition. In the case of Khok Phanom Di, the increasing role of females in producing high-quality ceramic vessels may have contributed to the change

    Solution of the Multi-Channel Anderson Impurity Model: Ground state and thermodynamics

    Full text link
    We present the solution of the SU(N) x SU(M) Anderson impurity model using the Bethe-Ansatz. We first explain what extensions to the formalism were required for the solution. Subsequently we determine the ground state and derive the thermodynamics over the full range of temperature and fields. We identify the different regimes of valence fluctuation at high temperatures, followed by moment formation or intrinsic mixed valence at intermediate temperatures and a low temperature non-Fermi liquid phase. Among other things we obtain the impurity entropy, charge valence and specific heat over the full range of temperature. We show that the low-energy physics is governed by a line of fixed points. This describes non-Fermi-liquid behavior in the integral valence regime, associated with moment formation, as well as in the mixed valence regime where no moment forms.Comment: 28 pages, 8 figures, 1 tabl
    corecore